
 
 

 

 

 

 The Journal of Reproductive Medicine® 

 
Exploration Of Signature Genes and Their 
Correlation with Immune Cell Infiltration 
in Cirrhosis   

  
Yuxin Li1, Wenjie Zhang1, Yuanyuan Zhao1, * 
 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Abstract 
Early diagnosis of cirrhosis is crucial for improving patient prognosis. This study aims to investigate signature genes 

and their correlation with immune cell infiltration in cirrhosis. We utilized a liver cirrhosis patient dataset obtained 

from the GEO database to identify differentially expressed genes (DEGs). Weighted gene co-expression network 

analysis (WGCNA), least absolute shrinkage and selection operator (LASSO), and random forest analysis were 

employed to identify signature genes, including RGS1, DEFB1, and ANOS2P. Subsequently, gene set enrichment 

analysis (GSEA) revealed that these signature genes are associated with positive correlations with allograft rejection 

and the focal adhesion pathway. Moreover, CIBERSORT analysis suggested potential involvement of these signature 

genes in immune cell infiltration within cirrhotic conditions. This study enhances our understanding of cirrhosis 

pathogenesis and may contribute to the development of early diagnostic tools and therapeutic strategies. 

 

BACKGROUND 
Liver cirrhosis represents a pervasive health 

challenge globally, affecting both low-income, 

middle-income, and high-income countries alike, 

and is associated with substantial morbidity and 

mortality rates. Presently ranked as the 11th leading 

cause of death worldwide, cirrhosis is responsible 

for approximately 2 million fatalities annually.1 

Liver cirrhosis is a consequence of chronic 

inflammation causing progressive hepatic fibrosis.2 

Cirrhosis evolves through progressive hepatic 

fibrosis and ultimately advances to a 

decompensated stage marked by life-threatening 

complications, such as gastrointestinal bleeding, 

ascites, bacterial infections, hepatic encephalopathy 

(HE), and hepatorenal syndrome (HRS).3 These 

complications often lead to elevated morbidity and 

mortality rates.4 Cirrhosis stands out as a serious 

manifestation of chronic liver disease, imposing a 

significant global health burden due to its 

increasing prevalence and profound impact on 

public health.5 Characterized by extensive fibrosis, 

architectural distortion, and the transformation of 

normal liver structure into regenerative nodules, 

cirrhosis signifies the advanced scarring process in 

response to persistent liver injury.6 The primary 

causes of cirrhosis encompass a range of factors, 

including chronic viral hepatitis (hepatitis B virus 

and hepatitis C virus), alcoholic liver disease, non-

alcoholic fatty liver disease (NAFLD), autoimmune 

hepatitis, and various metabolic disorders.7 Chronic 

HCV infection emerges as one of the most prevalent 

causes of chronic hepatitis, leading to severe liver 

conditions such as steatosis, cirrhosis, and 

hepatocellular carcinoma (HCC).8, 9 In many cases, 

hepatitis C presents with no overt symptoms or 

signs, yet the risk of chronicity post-infection 

remains relatively high.10 Without standardized 

antiviral treatment, 15% - 30% of chronic hepatitis C 

patients may progress to cirrhosis within 20 years  
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after infection.11 Given the asymptomatic nature of 

hepatitis C in many cases, patients often seek 

medical attention only when cirrhosis symptoms 

are apparent. Some may even reach the 

decompensated stage of cirrhosis, missing the 

optimal treatment window and severely impacting 

their quality of life. Consequently, the 

identification of new therapeutic targets for liver 

cirrhosis resulting from hepatitis C assumes a 

crucial role in enhancing the quality of life for 

patients grappling with hepatitis C-induced 

cirrhosis. The intricate interplay between the 

immune system and HCV in the development of 

cirrhosis or liver cancer constitutes a complex and 

continually evolving field of study.12  
The initial interaction between HCV and the 

immune system elicits both innate and adaptive 

immune responses.13 However, HCV has 

developed 

sophisticated strategies to elude immune detection, 

resulting in chronic infection. Viral persistence 

emerges as a crucial factor in the transition from 

chronic hepatitis C to cirrhosis. The ongoing 

presence of HCV in the liver establishes a pro-

inflammatory microenvironment, creating a 

conducive environment for the emergence of liver 

cancer.  
Persistent HCV infection induces chronic 

inflammation, characterized by the infiltration of 

immune cells into the liver parenchyma.14 This 

prolonged inflammatory response contributes to 

the activation of hepatic stellate cells and the 

deposition of extracellular matrix, ultimately 

leading to fibrosis—a precursor to cirrhosis and 

HCC.15 Inflammatory mediators, including 

cytokines and chemokines, play a pivotal role in 

orchestrating the immune response within the 

hepatic microenvironment.16, 17  

In our study, we applied multiple bioinformatic 

methodologies to identify signature genes 

implicated in liver cirrhosis induced by hepatitis C. 

These genes exhibited notable diagnostic efficacy. 

Moreover, we conducted a comprehensive 

assessment of the enrichment signaling pathways 

associated with these genes and their roles in 

immune cell infiltration. Our findings aim to offer 

fresh insights to clinicians for improved diagnosis 

and treatment strategies in the context of liver 

cirrhosis caused by hepatitis C. 

 METHOD AND MATERIAL 
 
Data sources 
 

For the current study, a dataset, namely GSE14323 

(Platforms: GPL96 [HG- U133A] Affymetrix 

Human Genome U133A Array, GPL571 [[HG-

U133A_2] Affymetrix Human Genome U133A 2.0 

Array), have been downloaded from Gene 

Expression Omnibus (GEO) 

(http://www.ncbi.nlm.nih.gov/geo/). GSE14323 

contained 60 non-tumor patients, including 41 

patients with cirrhosis and 19 normal controls. 

 
Identification of DEGs 
 
Using R software’s limma package,18 differentially 

expressed genes (DEGs) between septic shock 

cohort and control cohort were analyzed, with the 

following criterion: adjust p value <0.05 and |log 

fold change (FC)| > 1. The volcano plot was 

generated to show these DEGs, while the top100 

DEGs were displayed by the heatmap. 

 
Functional and pathway enrichment 
analyses 
 
Functional enrichment analyses of differentially 

expressed genes (DEGs) were performed utilizing 

the clusterProfiler package in R, focusing on Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) annotations.19 In the context 

of the GO analysis, three distinct categories, 

namely biological process (BP), cellular component 

(CC), and molecular function (MF), were discerned 

to comprehensively investigate the biological 

relevance of these DEGs. Additionally, the 

exploration of potential signaling pathways was 

conducted through KEGG analysis. 

 

Weighted gene co-expression network 
analysis 
 
Utilizing the scale-free topology criterion, we 

constructed a co-expression network in the 

GSE14323 cohort through weighted gene co-

expression network analysis (WGCNA).20 The 

determination of the soft threshold power and 

adjacencies was carried out using the pick Soft 

Threshold function within the WGCNA package. 
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Gene set enrichment analysis 
 
To elucidate the association between the signature 

genes and signaling pathways, we stratified the 

cirrhosis cohort based on the median expression 

values of hub genes. Subsequently, gene set 

enrichment analysis (GSEA) was conducted on 

distinct subgroups, with a significance threshold 

set at adjusted p < 0.05.23 

 
Immune cell infiltration 
 
The CIBERSORT method, employing the 

principles of linear support vector regression to 

deconvolute the expression matrix of 22 human 

immune cell subtypes, was applied to investigate 

variations in immune cell composition between 

children with cirrhosis and their healthy 

counterparts.24 Subsequently, we identified 

immune cells exhibiting significant differences in 

infiltration between cirrhotic and normal 

individuals. We then conducted an analysis of the 

correlation between these immune cells and the 

signature genes utilizing the Spearman method. 

 

Statistical analysis 
 

All statistical analyses in the present study were 

implemented using R software (version 4.1.3). 

Unless otherwise stated, p<0.05 was deemed as 

statistically significant, and all p values were two-

tailed. The flow chart of this research was shown 

in Figure 1. 

 

RESULTS 
 

Identification of DEGs between cirrhosis 
and control 
 

Differentially expressed genes (DEGs) between 

individuals diagnosed with cirrhosis and their 

normal counterparts underwent analysis using the 

"limma" package. A meticulous examination 

identified a total of 880 DEGs, with 637 genes 

demonstrating up-regulation and 159 genes 

exhibiting down-regulation in the cirrhosis group 

compared to the normal control cohort (Figure 

2A).  The visual representation of the top 100 

DEGs, as depicted in the heatmap, delineates the 

Subsequently, the adjacency matrix underwent 

conversion into a topological overlap matrix 

(TOM), with the corresponding dissimilarity 

computed for hierarchical clustering analysis. The 

dynamic tree cutting method, employing a 

minimum module size of 50, was applied to 

discern co-expressed gene modules. To establish a 

link between the gene modules and patients with 

cirrhosis, we measured the connection using gene 

significance (GS) values and module membership 

(MM) values, thereby identifying the key modules 

that exhibit substantial relevance in the context of 

cirrhosis. 

 

Signature gene identification 

 
Candidate hub genes were discerned through the 

intersection of Differentially Expressed Genes 

(DEGs) and key module genes. Subsequently, two 

machine learning algorithms, namely the Least 

Absolute Shrinkage and Selection Operator 

(LASSO) and Random Forest, were employed for 

the screening of hub genes. LASSO analysis was 

conducted using the glmnet package, 

incorporating penalty parameters for 10-fold cross-

validation—a method recognized for its 

superiority in evaluating high-dimensional data.21 

Additionally, we utilized the R package 

"randomforest" to classify the DEGs and identify 

hub genes. The Random Forest model determined 

the optimal number of variables by calculating the 

average error rate of candidate hub genes.22 

Subsequently, we computed the error rate for each 

range from one to 500 trees, determining the 

optimal number of trees based on the lowest error 

rate. With the identified parameters, a Random 

Forest tree model was constructed. Finally, the 

feature importance scores of each candidate hub 

gene were determined, and the top 50 genes with 

the highest importance values were selected. The 

intersection of genes obtained from these two 

machine learning algorithms constituted the 

signature genes associated with cirrhosis patients. 

The diagnostic efficiency of these signature genes 

was assessed using the area under the curve (AUC) 

of the Receiver Operating Characteristic curve 

(ROCs). An AUC greater than 0.7 indicated a 

favorable diagnostic performance. 

578 



The Journal of Reproductive Medicine® 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

distinctive gene expression patterns between 

patients with cirrhosis and the healthy control 

group (Figure 2B). 

Subsequent to the identification of DEGs, 

functional enrichment analyses were conducted to 

gain comprehensive insights into the underlying 

biological processes (BP), cellular components 

(CC), and pathways associated with these genes.  

The BP analysis uncovered significant involvement 

in positive regulation of lymphocyte activation, 

positive regulation of leukocyte activation,  

and lymphocyte-mediated immunity. 

In the CC analysis, predominant terms included 

MHC protein complex, MHC class II protein 

complex, and chemokine activity (Figure 2C). 

Furthermore, the KEGG analysis revealed the top 

three enriched pathways as Rheumatoid arthritis, 

Type I diabetes mellitus, and Antigen processing 

and presentation, shedding light on the potential 

molecular mechanisms underlying cirrhosis 

(Figure 2D). 

Figure 1. The flow chart of this research. 

 

 
 

Figure 2. Identification of the DEGs. (A) Volcano showed expression of DEGs between the patients with 

cirrhosis and healthy cohort. (B) The heatmap showed the top 100 DEGs. (A) The top 5 functional 

enrichment in BP, CC, and MF analysis, respectively. (B) The KEGG analysis of DEGs. 
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Construction of the weighted gene co-
expression network 

 
The establishment of a weighted gene co-

expression network involved analyzing patients 

with cirrhosis and healthy subjects using the 

WGCNA package in R software, resulting in the 

creation of a scale-free co-expression network. The 

cluster dendrogram illustrating this network is 

presented in Figure 3A. Subsequently, the data 

were systematically clustered into 12 distinct 

modules (Figure 3B). 

To assess the correlation with patients with 

cirrhosis, the correlation between each module and 

the clinical condition was calculated. Notably, the  

MEturquoise module emerged as significantly 

associated with patients with cirrhosis (cor=0.94, 

p<0.0001). A robust positive correlation between 

Module Membership (MM) and Gene Signature 

(GS) is depicted in Figure 3C, further highlighting 

the module's relevance. The MEturquoise module, 

encompassing 3367 genes, was identified as a 

pivotal module closely linked to patients with 

cirrhosis.  

The intersection between the differentially 

expressed genes (DEGs) and the genes within the 

MEturquoise module is visually represented in 

Figure 3D, providing insight into the shared 

genetic components between the two datasets. 

 

Figure 3. The WGCNA analysis of GSE14323 and identification of candidate hub genes. (A)  The cluster 

dendrogram of WGCNA. (B) The clustered modules of WGCNA. (C). A scatterplot of gene significance 

(GS) for weight vs module membership in MEturquoise module. (D) The veen plot showed the interaction 

between DEGs and genes in MEturquoise module. 

 

 
 

Selection of signature genes via LASSO and 
random forest algorithms 

 
Two machine algorithms were applied to screen 

out signature genes from candidate key genes in 

patients with cirrhosis. For the LASSO analysis 

selected 17 signature genes (Figures 4A, B), while 

in the random forest analysis, 17 signature genes 

were determined with relative importance more 

than 0.18 (Figures 4C, D).  

These screened out signature genes were  

 

displayed in Table S1. Three signature genes were 

finally determined via the interaction of these two 

algorithms, containing RGS1, DEFB1, ANOS2P 

(Figure 4E). 

 
Diagnostic efficacy of signature genes in 
predicting cirrhosis and control 
 
The screened signature genes were highly 

expressed in patients with cirrhosis than those in 

healthy samples, suggesting that these genes may 
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 play a potential role in liver cirrhosis (Figures 5A). 

Furthermore, the area under curve (AUC) of the 

receiver operating characteristic curve (ROC) of 

these signature genes were 0.999 of RGS1, 0.991 of 

ANOS2P, 0.999 of DEFB1 respectively  

(Figures 5B). 

 
Figure 4. The machine algorithms for signature genes. (A) LASSO plot showed the variations in the size 

of coefficients for parameters shrank as the value of k penalty increased. (B) Penalty plot of the LASSO 

model with error bars denoting standard errors. (C) The error rate confidence intervals for random forest 

model. (D) The relative importance of genes is more than 0.18 in random forest model, (E) The interaction 

of the LASSO and random forest algorithms. 

 

 

 

Figure 5. The performance of the signature genes in GSE14323. (A) The expression of signature 

genes between the patients with cirrhosis and healthy cohort. (B) ROC showed the diagnostic 

performance of the signature genes. 
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GSEA analysis 
 
We assessed signaling pathways associated with 

signature genes via GSEA analysis. The top 10 

signaling pathways were displayed in Figure 6. 

The results showed that ANOS2P was significantly 

correlated with allograft rejection, cell adhesion 

molecules, focal adhesion, leishmaniasis, 

neuroactive ligand-receptor interaction, 

phagosome, protein processing in endoplasmic 

reticulum, rheumatoid arthritis, type 1 diabetes 

mellitus, viral myocarditis (Figure 6A). The 

expression of DEFB1 significantly correlated with 

allograft rejection, cell adhesion molecules, focal 

adhesion, graft-versus-host disease, influenza A, 
 

leukocyte transendothelial migration, protein 

processing in endoplasmic reticulum, rheumatoid 

arthritis, type 1 diabetes mellitus, viral 

myocarditis (Figure 6B). The expression of RGS1 

significantly correlated with allograft rejection, 

coronavirus disease -COVID-19, Epstein-barr 

virus infection, focal adhesion, graft-versus-host 

disease, leishmaniasis, neuroactive ligand-

receptor interaction, rheumatoid arthritis, type 1 

diabetes mellitus, viral myocarditis (Figure 6C). 

Taken together, these genes all positively 

correlated allograft rejection and focal adhesion 

pathway as well as type 1 diabetes mellitus and 

viral myocarditis pathway. 

Figure 6. The GSEA of the signature genes in cirrhosis. (A) The GSEA of ANOS2P in cirrhosis. (B) The 

GSEA of DEFB1 in cirrhosis. (C) The GSEA of RGS1 in cirrhosis. 

 

 

Immune cell infiltration 

 
Immunological features were evaluated according 

to immune cell infiltration. Compared with normal 

samples, patients with cirrhosis have higher plasma 

cells, CD4 memory resting T cells, gamma delta T 

cells, macrophages M1, eosinophils infiltration and 
lower naive B cells, CD8 T cells, follicular helper T 

cells, gamma delta T cells, Tregs cell infiltration 

(Figure 7A). The hub gene RGS1 were positively 

correlated with the infiltration of Eosinophils 

and Macrophages M0, activated NK cells, 

follicular helper T cells, and negatively 

correlated with the infiltration of Macrophages 

M2 and activated mast cells. DEFB1 was 

positively correlated with the infiltration of 

activated dendritic cells, negatively correlated 

with the infiltration of naïve CD4 T cells. 

ANOS2P was positively correlated with the 

infiltration of follicular helper T cells (Figure 7B). 
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 DISCUSSION 
 

Cirrhosis is recognized as a systemic ailment, 

impacting various organs and systems, including 

the immune system.25 Timely diagnosis and 

intervention are imperative for enhancing the 

prognosis of individuals afflicted with liver 

cirrhosis. Emerging evidence underscores the 

significant role of immune cell infiltration in 

cirrhosis.26 Intriguingly, recent studies propose that 

impeding extracellular matrix accumulation to 

inhibit inflammatory cytokines may present a 

promising therapeutic avenue for cirrhosis.14, 27 In 

our investigation, a total of 880 Differentially 

Expressed Genes (DEGs) were identified between 

cirrhotic and normal cohorts. The mechanistic 

insights into these DEGs were elucidated through 

enrichment function analysis. GO enrichment 

exploration revealed marked associations of DEGs 

with positive regulation of lymphocyte activation, 

positive regulation of leukocyte activation, and 

lymphocyte- mediated immunity. Furthermore, we 

employed WGCNA to identify key modules. 

Signature genes linked to cirrhosis, namely RGS1, 

ANOS2P, and DEFB1, were identified through 

LASSO and random forest analyses. Subsequent 

validation in external datasets confirmed the 

significance of these signature genes. Gene Set 

 

Enrichment Analysis (GSEA) unraveled signaling 

pathways correlated with hub genes, and 

CIBERSORT algorithm quantified immune cell 

infiltration and its correlation with signature 

genes in cirrhosis and healthy groups. RGS1, or 

Regulator of G-Protein Signalling-1, accelerates 

Gαi GTPase activity, downregulating the response 

to sustained chemokine activation.28 Genome-

wide association studies have implicated RGS1 in 

polymorphisms associated with the risk of chronic 

inflammatory diseases such as celiac disease, 

multiple sclerosis, and type I diabetes.29, 30 

Recent findings suggest RGS1 as a novel marker 

and promoting factor for CD8 T-cell exhaustion.31 

While RGS1 has been associated with lymphocyte 

homeostasis control,32, 33 its role in liver cirrhosis 

remains unexplored, prompting our hypothesis of 

its involvement in the immune response 

associated with cirrhosis. 

ANOS2P, identified as a pseudogene, warrants 

further investigation to delineate its specific 

functions and impacts on HCV infection. 

Pseudogenes, resembling genes but lacking 

coding capacity, have been implicated in diverse 

facets of HCV infection, including immune 

responses, viral replication, and host cell 

signaling, as suggested by recent research.34,35 

However, further in-depth studies are required to  

Figure 7. The immune cell infiltration association with signature genes. (A) The immune cell infiltration 

between the cirrhosis and healthy cohort. (B) The association between signature genes and significantly 

different immune cell infiltration. "ns" means P ≥ 0.01. 

*P < 0.01, **P < 0.001, and ***P < 0.0001. 
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elucidate the specific functions and influences of 

pseudogenes in the process of HCV infection. 

DEFB1,36 encoding the antimicrobial peptide β-

defensin 1, crucially contributes to the immune 

system's defense against microbial infections. 

Dysregulation of DEFB1 gene expression has been 

linked to several cancers.37 Studies propose that 

DEFB1 may positively regulate the abundance of 

tumor-infiltrating CD4 T cells, thereby improving 

the prognosis of oral squamous cell carcinoma.34 

Consequently, further investigation is warranted 

to ascertain whether DEFB1 participates in 

cirrhosis by activating CD4 T cells. 

In summary, this study identified three signature 

genes, RGS1, ANOS2P, and DEFB1, with 

significant potential for early cirrhosis diagnosis. 

Additionally, the exploration of immune cell 

infiltration in cirrhosis and its correlation with 

signature genes provides a novel perspective on 

the role of immunity in cirrhosis. 
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